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Management Summary 
The research in this report is conducted for Beyond Sports, an innovative visualization company 

specializing in AI technologies to create unique perspectives and views of real sports footage. Beyond 

Sports collaborates with leading broadcasters such as Disney and ESPN, offering advanced player 

positioning and limb-tracking technologies to transform real-time sports matches into various 

animation styles, such as Toy Story, SpongeBob, and Ninja Turtles. 

Beyond Sports is dedicated to enhancing the sports viewing experience and the informational value 

of sports broadcasts. The company aims to provide deeper insights into sports performance, 

particularly in American football, where every action on the field is crucial. The primary task involves 

creating a model that can predict the optimal running path to the endzone for an American football 

player with the ball. The optimal path minimizes the total cost, calculated as the sum of certain 

weights (to be discussed later). Ultimately, this path with the minimal total cost is chosen as the 

optimal path. These predictions can help analysts provide more detailed insights into what a player 

could have done better during the game, thereby increasing the knowledge and engagement of 

viewers. 

This model takes into account the influence of opponents and teammates, as well as the distances 

between different points on the field. The influence of opponents and teammates, as well as the 

distances, are expressed as weights distributed across the field. The end zone is the target towards 

which the path is chosen. The Dijkstra algorithm is used as the model to find the minimal total cost 

on the field. 

The influence weights (of opponents and teammates) are calculated using the space control model, 

which assigns a weight to each location on the field, indicating which team is likely to have ball 

possession at that spot. Additionally, the model takes into account the speed of players, the fact that 

a player cannot make sharp turns at full speed, the reaction time of players to the actions of the 

player with the ball, and the rules that the defensive team can tackle the player with the ball while 

the offensive team can only block. This model is visually implemented, as shown in figure 1. 

 

 

 

 

 

 

 

 

Figure 1: The prediction of the optimal running path to the endzone for an American football player with the ball 
(circled in light blue). The yellow dots represent the opponents with a red heatmap represents their dominant space 
control (influence weights) on the field. The purple dots represent the teammates with a blue heatmap represents 
their dominant space control (influence weights) on the field. 
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The requirements from Beyond Sports, along with the conclusion that the result meets these 

requirements, are as follows: 

• The processing time of the prediction algorithm must not exceed 5 seconds. 

• The predicted running path should be realistic compared to what happens in practice. 

• The calculations of the prediction algorithm must work on any data frame of a loaded 

American football game. 

After conducting the research, several recommendations have been formulated to improve this 

study: 

• Simplify the programming code of the model in Beyond Sports' software to speed up the 

processing time of the prediction algorithm. 

• Test other algorithms besides the Dijkstra algorithm used, to achieve a faster processing 

time. 

• Evaluate the predicted running path in a programmed simulation to improve the evaluations 

of the predicted paths. 

• Further investigate the added turning angle condition to make the paths even more realistic. 

• Consider other targets besides the end zone, such as other distances, to predict paths to 

different strategic goals. 

• Assign a success score to a predicted path to provide a success probability for the predicted 

running path. 

The report concludes with an encouragement for further research into the method described in the 

article "A Reinforcement Learning Based Approach to Play Calling in Football" (Biro, P. & G. Walker, 

2021). This research utilizes a Markov decision process to determine optimal play choices based on 

collected data and outcome probabilities. By applying this methodology, a model can be developed 

that predicts the best actions for the player with the ball, such as throwing, running, or handing off 

the ball. This is recommended because Beyond Sports is interested in developing a model that can 

make these predictions. If the prediction from this model is that the player should run, the model 

from the current research can then be used to determine in which direction to run. 
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1 Introduction 
American football, a strategic and dynamic sport, captivates millions of fans worldwide (Afi, 2023). 

Teams of eleven players compete for victory within 60 minutes, where tactics, strength, and precision 

are key. In the past, analysts and so fans had limited data available, mostly basic statistics like yards 

run or passes completed. However, the introduction of sensors and tracking cameras has not only 

changed the analysis but also enhanced the viewing experience (Sports Player Tracking | Zebra, n.d.). 

These technologies collect detailed data on speed, position, and distances covered by players, 

providing fans with insights and a more intense game experience. These developments have 

introduced new methods for analyzing and experiencing matches, continuously evolving the sport 

(Stables, 2014). 

1.1 The Client  

Beyond Sports, a visualization company specializing in AI technologies, is the client for this project. 

The company, which has about 50 employees including six interns, provides broadcasters, teams, 

clubs, and brands with unique perspectives and renderings of real sports footage using player 

position and limb-tracking technologies. Beyond Sports is divided into several departments: the Data 

team, Unity team, Art/Design team, Software Development team, Marketing team, HRM (Human 

Resource Management) team, Machine Learning/AI team, Finance team, and the Board. The 

research is conducted within the Data department, which consists of four people. This team is tasked 

with enhancing and validating incoming data for visualizations. Their responsibilities include 

implementing event detection and adding animations, such as correcting unrealistic events in sports 

footage, for example, the ball with American football has no height yet so it is moved along the 

ground. These tasks require programming to ensure that the data reflect realistic scenarios, thereby 

making the visualizations representations of the reality. 

Beyond Sports has achieved a breakthrough in the visualization of live sports events. The company is 

now capable of converting real-time games into various animation styles, such as that of Toy Story. 

As seen in figure 2, the real game is displayed on the left side while the Toy Story-style visualization is 

on the right. This screenshot, taken during a game, illustrates the capability to not only follow the 

action in real-time but also to replay it in the chosen animation style. Beyond Sports collaborates 

with broadcasters like Disney and ESPN to deliver these animated visualizations. They create content 

in various styles, including those of Toy Story, SpongeBob, and Ninja Turtles, for a wide range of 

sports such as American football, ice hockey, and soccer. The visualizations are made with live data, 

allowing viewers to watch the game in animation style simultaneously on Disney or ESPN platforms. 

A key aspect of this service is the ability for viewers to watch the game from different camera angles. 

Beyond Sports' revenue model is based on contracts with these broadcasters, for whom they 

produce simulations in animation style that are then broadcasted on their platforms. This provides a 

unique viewing experience that transforms the way fans experience sports (Zachary, 2023). 
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Figure 2: On the left, the real American football game, and on the right, the simulation by Beyond Sports. 

Note: Adapted from: Sports (2024) 

1.2 The Desired Situation  

Beyond Sports is committed to enriching the sports experience and the informational value of sports 

broadcasts. The company is interested in providing insights into sports performance, particularly in 

American football, because this sport is one of the most popular sports in America (Jones, 2024). 

Beyond Sports aims to develop a model that can predict the best action for a player with the ball: 

whether to throw, run, or hand off the ball. If the player opts to throw, in which direction or to which 

player? If the player chooses to run, what is the best route they can take? If the player decides to 

hand off the ball, to which player? With these predictions, analysts can provide more explanations of 

what a player could have done better during the game, which not only improves athletic 

performance (Ambler, 2024) but also enhances the knowledge and engagement of viewers (Power, 

2024). 

1.3 The Main Assignment  

After consultation with the client and based on the time available for this study, it was decided to 

contribute to a contribution of the desired situation. 

Research goal: Developing a model that can predict the optimal running path to the endzone for an 

American football player with the ball.  

These paths are optimized based on both the shortest distance to the endzone (the area where a 

touchdown can be scored) and the positions and movements (also referred to as a certain influence) 

of opponents and teammates on the field. The influence of opponents and teammates, as well as the 

distances, are expressed in weights. The model will propose paths where the sum of the distances 

and weights to the endzone is minimal. This is considered the most effective progression to the 

endzone for a player with the ball. Additionally, the optimal running path must be realistic and 

correspond to what happens in practice. The optimal paths will eventually be visually represented to 

evaluate the paths and demonstrate them to Beyond Sports. 

1.4 Sub Questions  

- What is required to develop a model that predicts the optimal running path to the endzone? 

• What are the criteria for defining an optimal running path? 

• What data is needed to determine the optimal running path? 
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• What model is needed to determine the optimal running path? 

• How can the model account for realistic scenarios in American football? 

• What variables are necessary to determine the optimal running path? 

• How is a single point chosen, and thus a single route for an American football player 

with the ball determined? 

- How will the optimal running path to the endzone be presented to Beyond Sports? 

 

1.5 Delivery and Requirements from/to Beyond Sports 

Beyond Sports will receive a C# implementation that will be integrated into their existing software. 

This existing software results in the simulation visible in figure 2. The implementation consists of a 

model, with corresponding calculations, that can predict the optimal running path to the endzone for 

an American football player with the ball. The predicted running path is ultimately visualized. 

To achieve the desired outcome of the main assignment, Beyond Sports has set several requirements 

that must be considered in the development of the final result: 

- The processing time of the prediction algorithm must not exceed 5 seconds. The client has 

added a requirement to the main assignment: the developed algorithm should be capable of 

functioning during a live match for the desired situation. This enables an analyst to display a 

visualization of the predicted optimal running path at any point during a live match. To 

achieve this, the processing time must not exceed 0.1 seconds. There is also a possibility that 

the algorithm will not function during a live match but will be used afterward, for instance in 

a game summary. In this scenario, the processing time can be longer, but must not exceed 5 

seconds. This ensures that the analysis is still quick and efficient, suitable for rapid reviews 

and evaluations immediately after the game. 

- The outcome for the running path must be realistic in comparison to what occurs in 

practice. 

- The calculations of the prediction algorithm work on any dataframe of a loaded American 

football game. So this means at any time during the match. 

1.6 Reading Guide  

This report consists of several sections. Chapter 2 explains the workings of the game of American 

football, including definitions of game terms that will appear later in the report. Chapter 3 describes 

the data that is available. Chapter 4 covers the methodology and literature review. Following this, 

Chapter 5 presents the evaluations of the model and the results. The report concludes with the 

conclusion, discussion, and recommendations. 
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2 The Game of American Football 
American football is a team sport played by two teams of eleven players each. The goal of the game 

is to score points by getting the ball into the opponent's endzone, where a touchdown can be made. 

This can be achieved by either carrying or throwing the ball. A match is divided into four quarters, 

each lasting 15 minutes (Haddad, 2024). 

Points can be scored in various ways: a touchdown is worth six points and is scored when a player 

brings the ball into the opponent's endzone; after a touchdown, the scoring team has the 

opportunity to score an extra point by kicking the ball between the goal posts, or two points by 

making another touchdown from the two-yard line. Additionally, a team can score three points with 

a field goal, where the ball is kicked between the goal posts from the playing field (Haddad, 2024). 

The game begins with a kick-off, where one team kicks the ball to the other team. The receiving team 

then tries to kick the ball as far towards the opponent's endzone as possible. The offense of the team 

with the ball then tries to advance at least ten yards in a series of four attempts (called downs) to 

earn a new set of four downs and continue until they score or the ball is turned over to the 

opponent. The defence tries to stop the offense and take possession of the ball (Haddad, 2024). 

A 'snap' is the moment the game starts (after a kick-off), the ball is passed from the centre to the 

quarterback. The quarterback leads the game, deciding whether to throw, run, or hand off the ball. 

The line to gain (LTG) is an imaginary line that the team must reach to extend their set of four downs 

and get closer to scoring. The LOS (line of scrimmage) is the starting line for each action. In short, the 

snap initiates the game, the quarterback sets the strategy, and the LTG marks the success target for 

the offense (Martin, 2022). 

A down in American football ends when the player with the ball is tackled, steps out of bounds, or 

when a pass is incomplete (not caught). After the end of a down, the ball is repositioned on the line 

where the previous action ended, and a new down begins, from a midfield area of the field. The 

midfield area is a strip that runs from front to back across the middle of the field, giving the offensive 

team a chance to try to reach the line of gain (LTG) again and continue their series of four downs to 

get closer to a score (Martin, 2022a). 
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3 Data 
In this chapter "Data," the dataset from Beyond Sports is described in detail. Section 3.1 addresses 

the complete dataset, while Section 3.2 specifically focuses on the variables used for the research. 

The dataset employed for the study has already been cleaned and made user-friendly; there are no 

missing values. 

3.1 Data exploration 

Beyond Sports has comprehensive data from 60 different American football games in the NFL 

(National Football League). This data is stored in JSON files that contain ten frames per second. With 

an average duration of three hours per game (including total time with 

game stoppages), this results in approximately 108,000 frames per 

game. The dataset used is an enhanced and cleaned version of the raw 

data, including information such as the height of the ball, the speed of 

the players, ball possession, and various events (more on this later). This 

dataset is immediately usable in simulations, enabling the visual analysis 

and review of a match. As depicted in figure 3, the simulation displays 

the positions of the players, the ball, and various game-defining lines 

such as the Line of Scrimmage (LOS) and Line To Gain (LTG) after loading 

the data. The simulation also indicates the team affiliation of each player, 

the current score, the period, and the time. The field is oriented with the 

centre spot at the coordinates (0,0,0), where the y-axis represents 

height, the x-axis length, and the z-axis the width of the field. 

Table 1 contains information about the subjects and variables included 

in the frames, and this table refers to the appendices where the 

variables within the subjects are described. 

Table 1: Overview of variables and all subjects from the dataset of an American football game. 

Variables or subjects 

names 

Example  Definition  

FrameCount 64452 The frame number 

TimestampUTC 1652366216500 This is a specific value when 

the observation is made. It 

has a Unix timestamp and is 

expressed with millisecond 

precision (Unix Time Stamp - 

Epoch Converter, n.d.). 

 

Persons It is a list, see Appendix 1, table 8 

for an overview of these 

variables in the list. 

Player information of every 

player on the field. 

Ball It is a list, see Appendix 1, table 9 

for an overview of these 

variables in the list. 

Ball information e.g. location 

and speed of the ball. 

Figure 3: A moment from Beyond Sports' 
simulation room where the data from a 
match is loaded. 

Note: Adapted from: The simulation 

of Beyond Sports 
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FootballContext It is a list, see Appendix 1, table 

10 for an overview of these 

variables in the list. 

Game information for 

example where the yard line 

is from the snap, what play 

minute and what down it is. 

DownMarkersContext It is a list, see Appendix 1, table 

11 for an overview of these 

variables in the list. 

Markers information on the 

field e.g. LOS and LTG lines. 

GameClockContext It is a list, see Appendix 1, table 

12 for an overview of these 

variables in the list. 

Game time information for 

example what quarter they 

are in and what time it is. In 

addition, it is given per 

second. 

MatchScoreContext HomeScore: 30, AwayScore: 6 Match score information, 

gives the score of the match. 

In addition, it is given per 

second. 

GameEventContext IdfGameEvents: {Id: 1497, Name: 

kickoff_play} 

Provides information about 

a particular action taking 

place on the field. In 

addition, this data is only 

detected if there is an event. 

For all events contained in 

the dataset, Appendix 2, 

table 13. 

 

3.2 Data description for the main assignment 

The data variables that are essential for developing the optimal running path for a player to the 

endzone are detailed in table 2. These data are characterized by a high level of detail and accuracy. 

This is evident as, with the simulation and the datasets used for the research, an American football 

game can be played out exactly as it would in real life within the simulation. Within this dataset, 

specific events are also included, representing important actions within American football. The 

events used for the main task are 'Run' and 'Touchdown'. 'Run' refers to an action where the player 

with the ball runs, while 'Touchdown' indicates that a player has scored a touchdown following a 

running play. 

Table 2:  The data variables used to develop the optimal run path to the endzone, with example and definition per variable.  

Variables Example  Definition  

Timestamp 1699225574100 This is a specific value when the observation is 

made.  It has a Unix timestamp and is 

expressed with millisecond precision (Unix 

Time Stamp - Epoch Converter, n.d.). 

 

Player_Id 151 This is a player's ID, each player has them own 

ID in the dataset. 
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In figure 4, a frame from a game is shown, with the variables (table 2) that are relevant for the main 

task. The positions of the players are visible through red and blue dots, while the position of the ball 

is marked with a black dot. This clearly indicates which players belong to the red team and which to 

the blue team. The frame is plotted over the dimensions of the field, which is 110 meters long along 

the x-axis and 50 meters wide along the z-axis, with an extra margin of 1 meter on the width to 

accommodate variations in field dimensions between different games. Central in this image is the 

middle of the field, indicated by the coordinates (0,0). Although more variables from table 2 are used 

for the models and calculations, they are not visible in figure 4. 

 

 

 

 

 

 

 
 

Ball_Id 2 This is an ID of the ball, the ball also has its 

own ID in the dataset. 

Player_position (3.045, 0, 19.818) This is x, y and z coordinate. Where x is the 

length, y is the height and z is the width. The 

unit is in meters. 

Speed 0.204 The magnitude of a player's velocity in m/s. 

TeamSide 2 Which team the player plays for. 

HasBallPossession True This is whether the player is holding the ball 

(True is fixed and False is not fixed). 

Ball_position (3.044, 2.088, 19.818) This is x, y and z coordinate. Where x is the 

length, y is the height and z is the width. The 

unit is in meters. 

Figure 4: The data of player positions (red and blue) and ball positions (black) plotted on an x and z axis, in the 
dimensions of a field of American football. With endzones is light green. 
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4 Method  
This chapter outlines the methodology of this research. First, the literature review is discussed. The 

review is divided as follows. Section 4.1 addresses previous research on this topic. Section 4.2 

discusses the chosen model, including the selection criteria and the selection process. Finally, section 

4.3 explains and discusses the applied method of the model on the main task. 

4.1 Previous Research 

The study "A Reinforcement Learning Based Approach to Play Calling in Football" explores a 

reinforcement learning-based method for making play decisions in American football. The research 

employs a Markov decision process to determine optimal choices at every level of the game, taking 

into account the collected data and probabilities of different game outcomes. This process aids in 

optimizing decisions in American football by anticipating the expected utility of various actions, such 

as running or passing, in different game situations. The paper presents a methodology for calculating 

these expectations and demonstrates how this can assist in making better decisions during the game, 

with the goal of maximizing the score. The approach is analysed with various examples and scenarios 

within the game, providing insights into how data analysis and machine learning can contribute to 

strategic decision-making in sports like American football (Biro, P. & G. Walker, 2021). 

The decision-making process described in the article determines whether it is optimal to run or pass 

based solely on the current game state (down, distance to the first down, and distance to the end 

zone). However, it does not take into account the direction in which a pass should be made or the 

specific route that players should follow. In paragraph 1.2, the desired situation is described, which 

presents an interesting research question posed by Beyond Sports: "a model that can predict what a 

player with the ball should ideally do: throw, run, or hand off the ball." However, Beyond Sports asks 

for more; specifically, the direction in which the ball should be thrown or run. Given the limited time 

for this research and a lesser degree of expertise in reinforcement learning, it has been decided to 

focus on what the optimal running path to the endzone is for an American football player. 

4.2 The Algorithms  

Determining the optimal running path in American Football combines theory and data to establish 

the shortest route to the endzone, taking into account the positions and movements of both 

opponents and teammates. This process is described as a shortest path problem, with section 4.2.1 

first explaining the general concept of the shortest path problem. Section 4.2.2 discusses the 

examined properties on which the algorithm was chosen. 

The choice of the algorithm and the model for calculating influence weights are further elaborated in 

the following subsections. In section 4.2.3, the final choice of the algorithm is detailed, and in section 

4.2.4, the model for calculating influence weights at the field is explained. 

4.2.1 The Shortest Path Problem 

The shortest path problem involves finding the fastest or least costly route between two points in a 

network, which consists of nodes connected by roads or links. Each connection has a 'weight' that 

can represent distance, time, or cost. This problem is commonly encountered in practical 

applications. For example, in navigation systems like GPS, which calculate the fastest route to a 

destination (W3Schools, n.d.). 
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4.2.2 The Examined Properties for the Algorithms 

In the search for algorithms to approach the shortest path problem, with the goal of predicting the 

optimal running path in American football, the following properties have been examined: type of 

graph, optimality, efficiency, and implementation. 

- A graph is a mathematical structure consisting of nodes (also called "vertices") and edges 

that connect these nodes. In the context of shortest-path algorithms, a graph is used to 

model networks, such as road networks (GeeksforGeeks, 2024). Graphs can be static or 

dynamic (type): 

• Static graphs: The structure and weights of the graph do not change during the 

calculation (Madkour et al., n.d.). 

• Dynamic graphs: The structure or weights of the graph can change during the 

calculation, for example, by adding new edges or nodes, or by changes in the weights 

(Madkour et al., n.d.). 

- Optimality refers to the extent to which an algorithm is capable of finding the best solution. 

For shortest-path algorithms, this usually means finding the path with the least total distance 

(or cost) between two nodes: 

• Global optimum: The algorithm always finds the shortest path, regardless of the 

circumstances (Arora, 2004). 

• Heuristic: The algorithm uses estimates (heuristics) to speed up the search process. 

This can sometimes be at the expense of optimality, resulting in not always finding 

the absolute best path, but rather a very good path in a shorter time (Khodadadi et 

al., 2023). 

- Efficiency pertains to the amount of computational power (time) and memory (space) that 

an algorithm requires to accomplish its task. The degree of efficiency: very efficient, highly 

efficient, efficient, less efficient (R & Ahmed, 2021). 

- Implementation refers to the practical aspects of programming and executing an algorithm. 

The degree of implementation: simple, moderate, and complex (GeeksforGeeks, 2023). 

The choice to evaluate algorithms based on these properties is based on the following reasons. The 

type of graph affects the difficulty of implementation; static graphs are simpler to implement than 

dynamic graphs. Choosing an easily implementable algorithm accelerates development time and 

reduces the risk of errors, leading to reliable and time-efficient solutions. 

For this research, the main properties when selecting an algorithm are optimality and efficiency. 

Optimality is crucial because this research aims to find the optimal running path, which means 

always finding the best running path under the given conditions. Efficiency pertains to the processing 

time in combination with the size of the graph. Beyond Sports aims to run algorithms on live data, 

requiring processing time to stay within 0.1 seconds. For post-game predictions aimed at analysts, 

the processing time can be up to 5 seconds. Therefore, the goal is to use algorithms with high or very 

high efficiency. 
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4.2.3 The Choice of Algorithm  

The following four algorithms, often used for solving the shortest path problem, are compared. Each 

is optimized for different types of graphs and scenarios: 

• Dijkstra's Algorithm: Suitable for graphs with non-negative weights (Algorithm Examples, 

2024). 

• Bellman-Ford Algorithm: Can handle negative weights and detects negative cycles (Algorithm 

Examples, 2024). 

• A* Algorithm: Uses heuristics for more efficient searches in large networks (R & Ahmed, 

2021).  

• D* Lite Algorithm: Ideal for dynamic environments, such as robotics (Jin et al., 2023). 

In table 3, the chosen properties for each algorithm are displayed (GeeksforGeeks, 2023) (R & 

Ahmed, 2021) (Jin et al., 2023). When evaluating the two most important properties, efficiency and 

optimality, Dijkstra's algorithm and the D* Lite Algorithm emerge as the best options. Ultimately, 

Dijkstra's algorithm is chosen because its implementation is significantly simpler compared to the D* 

Lite Algorithm. 

Table 3: The chosen algorithms are displayed in the table, along with the properties on which they are selected, for each 
individual algorithm. 

Algorithm Type of Graph Optimality Efficiency Implementation 

Dijkstra Static Global optimum Highly efficient Simple 

Bellman-Ford Static Global optimum Less efficient Simple 

A* Algorithm Static Heuristic Very efficient Moderate 

D* Lite Algorithm Dynamic 

Efficient in 

dynamic 

Efficient with 

dynamic changes Complex 

 

It is still possible to test other algorithms if the processing time of Dijkstra's algorithm proves to be 

too slow. This also applies to algorithms that have not been included in this paragraph. Additionally, 

various options can be considered to make Dijkstra's algorithm itself faster. 

4.2.4 The Weight of the Nodes 

In addition to the distance weights between nodes considered by Dijkstra, an extra weight is added 

to a node. This is to implement a model that takes into account the positions of opponents who can 

tackle the player with the ball, as well as teammates who can block these opponents. This model, 

called "space control," was developed by Fernández and Bornn (2018). It was originally applied to 

soccer and describes the area of influence of a team on the field. 

Spearman (2016) defines "space control" as the probability that a team has possession of the ball at 

position x when the ball moves to position x. This concept can also be applied to American football, 

based on the principles on which the model is founded and explained. 

An example of an outcome from the space control model by Fernández and Bornn, applied to soccer, 

is shown in figure 5. The probabilities and colours in figure 5 represent the chances for the red team. 



15 
 

 

Figure 5: Example of a possible outcome from the space control model in soccer. 

Note: Adapted from: Wide Open Spaces: A statistical technique for measuring space creation in professional soccer, by J. 

Fernandéz & L. Bornn, p. 6. 

Before "space control" can be calculated, the "player influence area" for each individual player on the 

field is first determined. This is the probability that a player will have possession of the ball at 

position x when the ball moves to position x. In short, space control is the sum of all player influence 

areas on the field (Fernandéz & Bornn, 2018). 

The exact method of calculating these values will be explained later. First, the principles on which the 

player influence area is based will be discussed. Player influence areas are based on the following 

reasoning (Fernandéz & Bornn, 2018): 

• The player influence areas of players vary depending on their position relative to the ball. 

Players who are farther from the ball exert influence over a larger area because they have 

more time to anticipate the ball’s movements. Conversely, players closer to the ball have less 

time for anticipation, resulting in a smaller player influence area. 

• A player's speed is also crucial in determining the player influence area. A running player can 

exert greater influence in areas in the direction they are moving compared to when they are 

walking or jogging. 

• Additionally, a player’s influence is stronger in nearby spaces than in more distant areas. 

The proportion between the weights of space control and the distance weights in Dijkstra’s grid, and 

how this proportion is determined, will be discussed in the next paragraphs. 
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4.3 Application of the Models 

This paragraph outlines the methodology of the models used for this assignment. First, a general 

explanation of the Dijkstra algorithm is provided (section 4.3.1). Next, the application of the Dijkstra 

algorithm in American football is discussed (section 4.3.2). Then, the method for the Space Control 

model is explained, including the transformations performed (section 4.3.3). Section 4.3.4 describes 

how the values of Space Control are integrated into the Dijkstra algorithm grid. Following this, 

section 4.3.5 discusses how the running path is visualized in a plot. Section 4.3.6 covers the turn limit 

constraint in the Dijkstra grid, and finally, section 4.3.7 explains how the optimal running path is 

evaluated. 

 

4.3.1 General Functioning of Dijkstra’s Algorithm 
Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which 

may or may not have weights on the edges (GeeksforGeeks, 2024b). An example of a chosen path 

through the Dijkstra algorithm is shown in figure 6. In the Dijkstra algorithm, the search for the 

shortest path begins from starting point A with an initial distance of 0. At each step, the route with 

the minimal total distance to the next point is chosen, until the endpoint G is reached with the 

shortest possible route. 

 

Figure 6: An example of a shortest path from point A to point G, chosen by the Dijkstra algorithm. 

Note: Adapted from: Cambre, C. (n.d.). 

The algorithm uses a priority queue to process the node with the lowest distance to the start point. 

The process works as follows: 

1. Initialization: Set the distance to the starting point to 0 and to all other points to infinity. 

Mark all points as 'unvisited'. 

2. Choose the node with the lowest distance: Initially, this is the starting point because the 

distance to itself is 0. Mark this point as 'visited'. 

3. Update distances: For each directly connected, unvisited node of the currently processed 

node, calculate the total distance from the start point to this node via the currently 

processed node. If this distance is lower than the currently recorded distance, update the 

distance. 
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4. Repeat: Repeat steps 2 and 3 until all nodes have been visited or the minimum distance in 

the priority queue is infinity (which means that the remaining unvisited nodes are not 

reachable from the start point). 

5. Conclusion: After processing all nodes, the distance record for each node contains the 

shortest distance from the start point to that node. 

4.3.2 Dijkstra algorithm applied in American football 

For this application of the Dijkstra algorithm, a grid is used as input, along with a pre-determined 

starting point and the endzone with a number of endpoints. Below is a more detailed description of 

each of these components: 

For the application of the Dijkstra algorithm within the context of American football, a grid model 

has been developed that is placed over the playing field. This grid can be divided into various sizes, 

with smaller cells providing more accurate route determination but also increasing the number of 

nodes and thus the processing time of the algorithm. An example of a scaled grid model over an 

American football field can be seen in figure 7. The specific end zones are indicated in red and blue. 

The American football field is equipped with a grid, where each cell has a vertical or horizontal 

distance of 1 meter. Diagonal connections between the nodes have a distance of √2 meters. These 

measurements are based on the average stride length of a person, which ranges between 0.7 

(walking stride length) and 1.5 meters (jogging stride length) (Henkny, 2014). A diagonal step is larger 

than a step taken straight forward or sideways. Each corner of the squares in the grid serves as a 

node. This can be seen in figure 8, where the dimensions are indicated by the lines and the blue dots 

represent the nodes (and the corner points). Figure 7 shows a smaller grid than what is actually used 

for the main task. For the main task, a grid is used that corresponds to the standard dimensions of an 

American football field: 110 meters long and 50 meters wide. The grid contains nodes, and these 

nodes are also located at the edges of the field, resulting in 111 by 51 nodes. This means there are a 

total of 5661 nodes within the Dijkstra grid. The Dijkstra grid can be represented as a matrix of 5661 

by 5661, where each element in the matrix indicates the weight of the connection between each pair 

of nodes in the grid. 

 

The starting point for the Dijkstra algorithm is the coordinate of the player in possession of the ball. 

This coordinate is translated into a node since only nodes exist within the Dijkstra grid. If the 

Figure 78: American football field with the possible running lines for a player on 
the field, the red and blue squares are the endzones. 

Figure 87: A zoomed-in cell on the field 
with the dimensions per running line. 
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coordinate of the player with the ball falls between two nodes, the node closest to the player is 

chosen as the starting point. 

Finally, the Dijkstra algorithm is used to calculate a route to a specifically indicated area on the 

playing field. This area, the endzone, is crucial because reaching or crossing this line results in a 

touchdown. As shown in figure 9, there are several nodes directly on the endzone line. The Dijkstra 

algorithm calculates an optimal route from the starting point for each of these nodes. The algorithm 

ensures that the routes of the player with the ball are directed to the correct indicated area. This is 

the area where the player with the ball needs to score at that moment. In the game, after halftime, 

sides are switched, causing the touchdown area to change. 

 

 

 

 

 

 

 

 

 

 

 

 

After determining the starting point, the Dijkstra algorithm calculates the shortest routes from this 

single point to all pre-specified nodes on the endzone. Although multiple routes are calculated, the 

goal of the algorithm is to select only one optimal route. Each calculated route is assigned a score, 

which in this case is based solely on the distance (additional weights will be added later). These 

scores are compared, and the route with the minimal score, is chosen as the optimal route. The 

result of the algorithm is a list of nodes that form this optimal route, making it clear which path the 

player should take to reach the endzone. 

 

 

 

 

 

 

 

 

 

Figure 9: American football field with the possible running lines for a player on the field, the red and blue squares 
are the endzones. With the specified areas where the end nodes are located are indicated on the field. 
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4.3.3 Space Control 

In this section, the space control model is discussed. This model assigns a specific weight to each 

location on the field, indicating which team is likely to have ball possession at that particular spot. 

Initially, this model determines the player influence area of each player on the field. 

The player influence area is defined by a multivariate normal distribution, the shape of which is 

adjusted by the player's location, speed, and relative distance to the ball, as shown in figure 10 

(these are examples of player influence areas). The detailed method (and formulas) for this are 

described in the Space Dominance report (Heijerman et al., 2024, pp. 21-24) and the Fernández and 

Bornn (2018) report (pp. 18-19).  

First, the player influence area function is explained (section 4.3.3.1), followed by how these player 

influence values are converted into Space Control values (paragraph 4.3.3.2). Next, the 

transformations performed in the Space Control model are discussed (paragraph 4.3.3.3), and finally, 

how the magnitude of these transformations was determined (paragraph 4.3.3.4). 

Note: Adapted from: Wide Open Spaces: A statistical technique for measuring space creation in professional soccer, door J. 

Fernandéz & L. Bornn, p. 5. 

4.3.3.1 Player influence area function 

The player influence area is based on three principles: speed, distance to the ball, and nearby 

locations having a higher probability value (paragraph 4.2.4). The player influence area function, 

Formula 1, is designed to model the influence of a player's position on the field using the 

multivariate normal distribution. This function utilizes the variables 𝜇(𝑡) and 𝐶𝑂𝑉(𝑡), which 

respectively determine the mean and the covariance matrix of the distribution of the player's 

position at a specific timestamp (𝑡) (Heijerman et al., 2024, pp. 21). 

Formule 1:    𝐼𝑐(𝜇 , 𝐶𝑂𝑉, 𝐿𝑐 , 𝑝) =
𝑃𝐷𝐹(𝜇, 𝐶𝑂𝑉, 𝐿𝑐)

𝑃𝐷𝐹(𝜇, 𝐶𝑂𝑉, 𝑝)
 

Figure 10: An example of a player's player influence area with different speeds and ball distances. 
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𝐼 = 𝑇ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎 

𝑃𝐷𝐹 = Probability density function 

𝐶𝑂𝑉 = 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

𝜇 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

𝑝 = 𝑇ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟 

𝐿 = 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 

𝑐 = 𝐴 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 

 

The formula takes as input 𝐿, which is a matrix of every coordinate on the field where the influence 

of a single player is assessed. This is a 111 by 51 matrix, corresponding to the number of nodes in the 

length and width of the field used in this study. 𝐿𝑐 represents one coordinate on the field. In Formula 

1, 𝑝 is the current coordinate of the player. 

First, a multivariate normal distribution is created with the variables 𝜇(𝑡) and 𝐶𝑂𝑉(𝑡). This 

multivariate normal distribution is used to calculate the probability density at the given coordinate 

𝐿𝑐, expressed as 𝑃𝐷𝐹(𝜇 , 𝐶𝑂𝑉, 𝐿𝑐  ), where "PDF" stands for the probability density function. The 

numerator of Formula 1 is given by 𝑃𝐷𝐹(𝜇 , 𝐶𝑂𝑉, 𝐿𝑐  ), representing the degree of influence at the 

specified locations according to the multivariate normal distribution. The denominator of the 

formula is given by 𝑃𝐷𝐹(𝜇 , 𝐶𝑂𝑉, 𝑝), representing the probability density of the player at his current 

coordinate. This formula provides a standardized measure of the influence (𝐼𝑐) of the specified 

coordinate 𝐿𝑐 relative to the current coordinate of the player 𝑝(𝑡), where the modeling is 

determined by the multivariate normal distribution with variables 𝜇(𝑡) and 𝐶𝑂𝑉(𝑡). This is done for 

each coordinate (𝑐) on the field, creating the player influence area (𝐼), as well as for each player 

(Heijerman et al., 2024, pp. 21). 

To calculate the values of the probability density functions, the mean 𝜇(𝑡) and covariance matrix 

𝐶𝑂𝑉(𝑡) of the multivariate normal distribution must first be determined. This can be found in the 

Space Dominance report (Heijerman et al., 2024, pp. 21). 

In the calculation of the values of the covariance matrix 𝐶𝑂𝑉(𝑡), the player influence area radius is 

included (source). The article by Fernández & Bornn (2018) assumes that the range of the influence 

radius in soccer is between 4 and 10 meters. This range has been adjusted because this assignment 

focuses on running paths. The ball only moves because a player is running, which means that the ball 

moves slower compared to when it is thrown or kicked. Therefore, the further a player is from the 

ball, the greater their anticipation time and thus their area of influence becomes. This range has 

been adjusted to an interval between 10 and 40 meters. 

The influence radius depends on the distance to the ball. Thus, the distance between the ball and 

player must first be calculated for a given moment 𝑡. Figure 11 shows the relationship between the 

distance to the ball and the influence radius. With this function, the distance to the ball can be 

converted into the influence radius. Then, the influence area is determined with the influence radius 
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and subsequently corrected by the speed fraction and direction of movement. This is explained in 

detail in the Space Dominance report (Heijerman et al., 2024, pp. 21-23). 

 

 

Figure 11: The transformation function is plotted; with the distance to the ball, the influence radius of the player influence 

area is determined. 

4.3.3.2 Space Control Values 

In paragraph 4.3.3.1, the determination of the player influence area is described. The player 

influence area (𝐼) is represented as a 51 by 111 matrix, containing 5661 values. Each value indicates 

the probability of ball possession for a player at a specific location 𝑐 on the field at a moment 𝑡 

during the match. Such a value is also referred to as an influence value of a player. With the influence 

values for location 𝑐 from all players on the field, the space control for location 𝑐 is determined for 

one of the teams, namely the defending team. In the match, there is an attacking team, the team 

with the ball, and a defending team, the team without the ball. Formula 2 is used to determine the 

space control (𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐) for the defending team for a location 𝑐 on the field. The letter 𝑖 under 

the first summation sign represents the players from the defending team. The letter 𝑗 under the 

other summation sign represents the players from the attacking team. Once the space control for the 

defending team for each location 𝑐 is determined, the output is placed in a 51 by 111 matrix. This 

represents, for each location 𝑐, the probability of ball possession for the defending team at time 𝑡 

(Heijerman et al., 2024, pp. 23). 

The logistic transformation, without considering the yellow and blue marked factors, ensures that 

the value of space control falls within the range [0, 1]. This was done to create a probability value for 

space control. Subsequently, transformations were performed to convert these probability values 

into weights (or score) of a certain magnitude for the Dijkstra grid. 



22 
 

Formule 2:    𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐 =  
1

1 + 𝑒−1.3(1.3 ∑ 𝐼𝑐−∑ 𝐼𝑐)𝑗𝑖
+ 0.5 

𝑆𝐶𝐷𝑒𝑓𝑒𝑛𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑓𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 

𝑐 = 𝐴 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (𝑙𝑜𝑎𝑐𝑎𝑡𝑖𝑜𝑛) 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 

𝐼 = 𝑇ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎 

𝑖 = 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑒𝑓𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 

𝑗 = 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑎𝑡𝑡𝑎𝑐𝑘𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 

The first transformation is a translation of +0.5 (marked in blue) in the formula. This adjustment 

changes the range to [0.5, 1.5]. The reason for this translation lies in how the space control matrix is 

combined with the matrix (the grid) of the Dijkstra algorithm. The values of space control are 

multiplied by the corresponding distance weights (the values in the Dijkstra matrix). These two 

matrices have different structures: one is a 51 by 111 matrix, while the other is a 5661 by 5661 

matrix. How these multiplications take place will be explained later in this chapter. 

The translation of +0.5 is done to equate the minimum values of the Dijkstra grid (which only 

contains the distance weights before multiplication) with the neutral value of the space control 

matrix. With this translation, the neutral number is now 1, meaning there is no prevailing influence 

for either team in the range of space control output values. 

In the Dijkstra algorithm grid, the vertical and horizontal distances are 1, which are the minimum 

values in the grid. This means that these numbers are now equal, and the entire field starts with a 

weight of 1. Anything above 1 in the Dijkstra grid is additional weight and an addition to the 

distances. This is because the player with the ball (who belongs to the attacking team) must avoid 

the defending team as much as possible to avoid being stopped. Hence, the weights for the positions 

on the field where defensive players are located increase in the Dijkstra grid. 

Additionally, there can be values that fall within the range of [0.5, 1], which means a decrease in 

weight. This indicates that the attacking team has more influence on that specific part of the field. 

For the Dijkstra algorithm grid, the space control values of the teammates (the attacking team), 

which lie between [0.5, 1], are brought to 1. This is done because otherwise, the Dijkstra algorithm 

would prefer this node due to the lower weight than the minimum distance weight. A route past a 

teammate should not be more advantageous than a route where no one (neither a teammate nor an 

opponent) is present; this should not make a difference. A weight between [0.5, 1] can occur, for 

example, if a teammate is alone in that part of the field or has a larger influence area in that part of 

the field than the opponent. 
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4.3.3.3 Transformations of Scale Factors in the Formula 

Two important transformations have been applied in formula 2, namely a multiplication with two 

scale factors (highlighted in yellow in Formula 2). These transformations were added to generate 

more realistic routes. Here is an explanation of both scale factors. 

The first scale factor pertains to the values within the parentheses. The influence values of the 

defending team are increased by 30%. This is because the attacking team is allowed to block the 

defending team but not tackle them, while the defending team can tackle the player with the ball 

(International Federation of American Football, 2023). The rationale for the magnitude of this 

number will be further explained in the next paragraph. As a result, the player influence values for 

the defending team carry more weight than those for the attacking team. 

The second transformation is the addition of a scale factor of 1.3 to the logistic transformation 

(outside the parentheses in formula 2). This factor affects the rate at which the function increases or 

decreases. Specifically, the factor 1.3 ensures that the rise of the logistic function is faster than with 

the standard formula without the factor. This means that the transition from 0.5 to 1.5 is steeper and 

occurs over a smaller range of the sum of the player influence values (𝐼𝑐), as shown in figure 12. This 

adjustment ensures that the space control values (𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐) reaches their maximum or 

minimum weight more quickly. 

 
Figure 12: The logistic transformation plotted, to get the sum of player influence values within an interval of space control 

value. With the difference when a factor is added to this transformation. 
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4.3.3.4 Determining the Magnitude of the Transformations 

For the evaluation of the optimal running path, with input from experts at Beyond Sports who 

specialize in American football, the routes were made realistic by adjusting the magnitude of the 

scale factor transformations, the range of the influence radius, and the space control values. In figure 

13, a real game situation from a match is shown in the Beyond Sports simulation. Here, the player 

receives the ball, and the black line in figure 13 represents the successful touchdown run. The model 

predicts the optimal running path to the endzone by adjusting the magnitude of the transformations 

and the range to match the prediction with the successful touchdown run. 

 

Figure 13: The successful touchdown run (black line) for the player with the ball (circled in red) in a real American football 
game. 

 

This process is illustrated in figure 14, where the red heatmap represent the dominant areas of space 

control for the defending team and the blue heatmap represent the dominant areas of space control 

for the attacking team. The yellow dots indicate the players of the defending team, while the purple 

dots indicate the players of the attacking team in this case. The black line represents the predicted 

running path and starts at the player with the ball (black dot). Figure 14a shows the outcome of the 

initial step without any transformations or changes in the range of the space control model. Figure 

14b shows the outcome of a slight change in the range and the height of the scaling factor of formula 

2 (the space control formula). Figure 14c shows the outcome of the adjustments in range and scaling 

factor as explained in this chapter. Multiple successful touchdown runs were analysed, and the 

transformations were adjusted accordingly, with the condition that previously analysed situations did 

not deteriorate but remained the same or improved. This approach ensures that the model's 

predictions are not only realistic but also consistent with real game situations, as evaluated by 

experts. 

 

 

 

 

 

Note: Adapted from: The simulation of Beyond Sports 
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Through this process, the range of the space control values for the defending team was adjusted. 

These values were increased from the range [1, 1.5] to [1, 4]. This range pertains to the values that 

are added as extra weight, in addition to the distance weights, to the grid of the Dijkstra algorithm. 

 

 

 

 

4.3.4 Converting Space Control-Matrix to Dijkstra Algorithm Grid 

This paragraph explains how the summed and transformed Space Control weights (also known as 

𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒) and distance weights are combined. As previously mentioned, the 

𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐  values are multiplied by the corresponding distance weights. The 𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐 values 

are in an 𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒-matrix of 51 by 111, while the distance weights are already incorporated into 

a grid (or matrix) of the Dijkstra algorithm in a 5661 by 5661 matrix. 

To illustrate, here is an example with smaller matrices; the principle is the same for the larger 

matrices in this study. The 𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒-matrix (table 4) is a 2 by 3 matrix, where the rows represent 

points on the x-axis and the columns represent points on the z-axis, with a step size of 1. In this case, 

the field is 2 meters long (x-axis) and 1 meter wide (z-axis), with 6 nodes. 

In table 5, the distance matrix, which is the grid format of the Dijkstra algorithm, is shown. In table 6, 

these two are combined. For example: node 1, row 1 column 0 in table 4, has a value of 1.3. This 

value is multiplied by the distance when the player moves from node 0 to node 1. 

a) Shows the outcome 

of the initial step 

without any 

transformations or 

changes in the range 

of the space control 

model. 

b) Shows the outcome of a 

slight change in the range and 

the height of the scaling 

factor of formula 2 (the space 

control formula) 

c) Shows the outcome of the 

adjustments in range and scaling 

factor as explained in this chapter. 

Figure 14: Three figures, where the running path (black line) to the endzone is plotted on the field with the defending team 

(yellow dots) and attacking team (purple dots) for the player with the ball (purple dot with the black dot). The red heatmap 

represent the dominant areas of space control for the defending team and the blue heatmap represent the dominant areas of 

space control for the attacking team. 
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Table 4: Small-scale example of a 𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥. 

1 1.2 

1.3 3.2 

2.2 1.8 

Table 5: A small-scale example of the Dijkstra algorithm grid with only the distance weights between the nodes. 

 

 

 

 

 

Table 6: A small-scale example of the Dijkstra algorithm grid with the distance weights and the 𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐   values 
combined between the nodes. Here, the 𝑆𝐶_𝐷𝑒𝑓𝑒𝑛𝑐𝑒𝑐  𝑣𝑎𝑙𝑢𝑒𝑠 are added to the grid. 

 

 

 

 

 

 

4.3.5 Simple Visualization of Optimal Running Path  

To evaluate the optimal running path to the endzone calculated by the Dijkstra algorithm, this path is 

visualized on the field as shown in Section 3.2, figure 4. A heatmap is plotted over the field. This 

heatmap provides a visual representation of the areas on the field controlled by a team based on 

space and positions (space control). 

Each player is associated with a team, with one team represented by a red heatmap colour (the 

defensive team) and the other team by a blue heatmap colour (the offensive team). The heatmap is 

based on the values in the space control matrix (paragraph 4.3.3.2), which show the range [0.5, 1.5], 

before it is adjusted for the Dijkstra algorithm grid. 

The optimal running path to the endzone, calculated by the Dijkstra algorithm, is then plotted as a 

black line in the visualization. The plot of this line uses space control values in the range of [1, 4]. This 

path is initially given by the Dijkstra algorithm in nodes, which are then converted into coordinates 

on the x,z-coordinate system so that the path can be plotted. Finally, a smooth function called 

Savitzky Golay filter (Gallagher et al., 1964) is applied to the optimal running path to obtain a 

smoother visualization. 

 

 

From node 
↓/to node → 

0 1 2 3 4 5 

0 0 1 0 1 √2 0 
1 1 0 1 √2 1 √2 
2 0 1 0 0 √2 1 
3 1 √2 0 0 1 0 
4 √2 1 √2 1 0 1 
5 0 √2 1 0 1 0 

From node 
↓/to node → 

0 1 2 3 4 5 

0 0 1.3 0 1.2 √2*3.2 0 
1 1 0 2.2 √2*1.2 3.2 √2*1.8 
2 0 1.3 0 0 √2*3.2 1.8 
3 1 √2*1.3 0 0 3.2 0 
4 √2*1 1.3 √2*2.2 1.2 0 1.8 
5 0 √2*1.3 2.2 0 3.2 0 
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4.3.6 Turn Limit Condition to the Dijkstra Grid  

The purpose of these conditions in this sub-paragraph is that it works in the algorithm to get more 

realistic paths. The Dijkstra algorithm now calculates a route for the player with the ball from a still 

image, as shown in figure 15. In figure 15, the player with the ball is represented as the yellow dot 

with the black dot (the ball). The green arrow represents the velocity vector in the direction of 

movement, indicating the speed at which the player is running at that moment, expressed in meters 

per second. In figure 15, the player with the ball has a speed of 6.6 meters per second. It is 

unrealistic for a player at this speed to make a turn of 90 to 180 degrees in one go, without causing 

any delay in their declaration (Dos’Santos et al., 2021). Therefore, a condition has been added to the 

grid of the Dijkstra algorithm.  

For this conditions, a simple approach was chosen. This means that for a given running speed, from 

the moment the running path is calculated, a turning limit is introduced, as shown in table 7. The 

data below are derived from source BSc (2023) indicating that the average adult jogger has a speed 

of approximately 1.67-2.22 m/s. For this approach, it is assumed that about 1 meter is needed if a 

player wants to make a turn greater than 90 degrees. This interval from the source (BSc, 2023) has 

been rounded, as shown in table 7, and from there, a new interval has been determined step by step 

with a logical condition.  

 
 Table 7: Turn Limit Table, indicating which speed intervals have a turn angle limit and the 
angle within which the player can still turn. For the first three nodes. 

 

 

 

 

 
 

 

 

The steps for the turning angle condition are set at 22.5 degrees. This is 

because the distances between different nodes, as chosen in the method, 

can place a player's speed vector in a certain direction precisely between 

two possible paths. This is clearly visible in figure 16: the player in purple, 

at the bottom right corner, is moving faster than 4.5 m/s and has a certain 

speed vector (red). This player is therefore between two possible paths 

between two nodes. If the turning angle condition in table 7. had been 

chosen to be less than 22.5 degrees, the algorithm would not be able to 

choose the next node. 

 

 

 

Speed interval (m/s) Turn Angle Condition 
(degrees) 

1.5 - 2.5 m/s <90  

2.5 - 3.5 m/s <67.5  

3.5 - 4.5 m/s <45  

>4.5 m/s <= 22.5  

Figure 15: A running path 
prediction without a 
turning limit relative to 
speed (the speed is here 
6.6 m/s). 

Figure 16: The two paths 
(indicated in light blue) that a 
player (purple) can choose when 
moving at high speed (red vector). 
The direction of movement (red 
vector) can fall exactly between 
these two paths, forming an angle 
of 22.5 degrees. 
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These conditions listed in table 7 was implemented for the first three nodes, which amounts to 3 

meters from the starting point. For the following three nodes, a newly calculated speed is used. This 

is done because the player must slow down during the first meter, the first two meters or the first 

three meters if the player wants to turn and go the other way. The basic formula from kinematics 

(Toppr, 2019) has been rewritten to calculate the new speed for node 1, 2 or 3, resulting in Formula 

3. The value -5.7 in the formula represents a constant deceleration, and 𝑑 represents the distance 

travelled. This constant deceleration is taken from the following source STATSports (2021), which is 

based on research on professional soccer players but remains a simple approach in this study. For the 

speed at node 1, 𝑑 is equal to 1 meter, for node 2, d is equal to 2 meters, and for node 3, 𝑑 is equal 

to 3 meters. All negative results in the formula are set to 0, as a negative number is not possible 

under a square root. 

 

Formule 3:  𝑛𝑒𝑤𝑆𝑝𝑒𝑒𝑑 = √𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑝𝑒𝑒𝑑2 + 2 ∗ (−5.7) ∗ 𝑑 

𝑛𝑒𝑤𝑠𝑝𝑒𝑒𝑑 = 𝑇ℎ𝑒 𝑛𝑒𝑤 𝑠𝑝𝑒𝑒𝑑 𝑤ℎ𝑒𝑛 𝑎 𝑝𝑙𝑎𝑦𝑒𝑟 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑖𝑠 𝑟𝑎𝑡𝑒 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑝𝑒𝑒𝑑 =  𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑑 = 𝑇ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 

4.3.7 Evaluation Method of the Optimal Running Path 

This section describes how the optimal running path is evaluated. First, the researcher and experts 

from Beyond Sports, who understand American football, evaluated whether the routes are realistic 

compared to real game situations. Then the successful touchdown runs from different games are 

compared with the model's predicted paths. It is assumed that the successful touchdown run is 

always the most advantageous route to endzone. A total of 20 different touchdown runs from 

different games are analysed and compared to the predicted routes, resulting in a certain prediction 

percentage based on these 20 runs. This number of 20 was chosen because larger numbers take 

more time to analyse and, in addition, at this number can still yield a significant prediction 

percentage. 
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5 Results  
In this chapter, the result of the predicted running path to the endzone is compared with successful 

and unsuccessful touchdown runs in an actual game. Additionally, a hypothetical scenario is outlined, 

followed by a discussion of the requirements for the final product and a presentation of the final 

product. 

5.1 Evaluation 

In this paragraph, we first examine whether the turning limit condition results in a more realistic 

path. Then, we compare the predicted running path with a successful touchdown, and finally, we 

compare the predicted running path with an unsuccessful touchdown. 

5.1.1 Evaluation Turn Limit Condition 
A turning angle condition has also been implemented, as described in paragraph 4.3.6 of the Method 

chapter. The reason for this is to predict more realistic paths. In figure 17, two situations are shown 

that illustrate this condition. In figure 17a, the turning angle condition has not been applied. As a 

result, the turn is too sharp to be made in one go at the given speed (6.6 m/s), resulting in an 

unnatural path. In figure 17b, the turning angle condition has been applied. Here, due to the high 

speed preventing an immediate turn, a straight movement is made first. This demonstrates that the 

turning angle condition is effective, as the movement becomes more realistic, and a player cannot 

make a sharp turn at high speed in one go. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

a) Turning angle condition not applied in the 

prediction of the running path. The speed of 

the player with the ball (yellow dot with the 

black dot) is 6.6 m/s. 

b) Turning angle condition applied in the 

prediction of the running path. The 

speed of the player with the ball (yellow 

dot with the black dot) is 6.6 m/s. 

Figure 17: Two figures, where the running path (black line) is plotted on the field, with opponents and teammates, for the 
player with the ball (yellow dot with the black dot). Figure a is without turn condition and figure b is with turn condition. 
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5.1.2 The Predictive Model vs Successful Runs 
After determining the magnitude of the scale factors, the range of the influence radius, and the 

space control values transformations based on various successful touchdown runs from real games 

(subsection 4.3.3.4), multiple successful runs were analysed. These analyses aimed to determine 

how many successful touchdown runs were correctly predicted by the model. Here, as previously 

mentioned, it is assumed that the successful touchdown run is always the most advantageous route 

to the endzone. 

In the figure 18, example of a successful touchdown run in an American football game can be seen, 

with the black line representing the run. To the right of this figure is the model prediction for the 

game on the left, shown in figure 19. In figure 19, the yellow dots represent the defensive team, and 

the purple dots represent the offensive team. The red heatmap always represents the dominant 

areas of space control for the defensive team and the blue heatmap always represents the dominant 

areas of space control for the attacking team. In this situation, the model predicted the same run 

that occurred in the game. 

For this analysis, 20 different successful touchdown runs from various games were examined. Of 

these runs, 16 closely matched the model's predictions, as determined by visual inspection. This 

indicates that the model accurately predicted 80% of the successful touchdown runs analysed. 

In Appendices 3, 4 and 5, three additional situations (like shown in figures 18 and 19) can be seen 

that have been compared with each other. These scenarios have been added to illustrate the 

predicted running paths from various distances to the end zone or different positions on the field 

(such as from the sidelines or from the centre). 

 

 

 

 

 

Figure 18:19The successful touchdown run (black line) for the 
player with the ball (circled in red) in a real American football 
game. 

Figure 19: 18The prediction of the optimal running path to the 
endzone for an American football player with the ball (circled in 
light blue). The yellow dots represent the defensive team with a 
red heatmap represents the dominant areas of space control 
on the field. The purple dots represent the attacking team with 
a blue heatmap represents their space control on the field. 

Note: Adapted from: The simulation of Beyond Sports 
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5.1.3 The Predictive Model vs Unsuccessful Runs 
Finally, runs were also analysed where the player was intercepted on the way to the 10-yard line or 

the endzone, classified as a failed run, while the predictive model predicted a different running path. 

Below, two situations of a failed run in real life are discussed, providing insight into the model's 

behaviour and the decisions it makes. 

Most successful touchdowns that have been viewed go around the outside. However, when the 

outside is too crowded, these attempts often fail, indicating that the player should have chosen a 

different route. The model was also analysed for this, as it is important that it not only suggests 

routes along the outside but identifies where the most space is. An example of such a situation is 

shown in figure 20.  

In figure 20, the player with the ball (circled in light blue) is shown, and the black line indicates what 

the model chose as the optimal route to the endzone. The pink cross shows where the player went 

and was stopped. In this situation, the yellow dots are the attacking team, and the purple dots are 

the defensive team. This comparison shows that the model does not always choose the outside. In 

some situations, the model advises going to the middle, as this may offer a better chance of 

advancing. This is illustrated by an example where a player in a real situation wanted to go around 

the outside, but the model suggested going to the middle, which could ultimately be a more 

successful option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The prediction of the optimal running path to the endzone for an American football player with the 
ball (circled in light blue). The purple dots represent the defensive team with a red heatmap represents the 
dominant areas of space control on the field. The yellow dots represent the attacking team with a blue 
heatmap represents their space control on the field. The pink cross on the field marks where the player was 
stopped in the actual game. 

Field Size with Space Control and Optimal Running Path to the Endzone 
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In figure 21, the situation is reversed. Here, the yellow dots are also the attacking team, and the 

purple dots are the defensive team. The player with the ball (circled in blue) starts in the middle of 

the field. In this situation, the player chooses to go through the middle, where it is crowded, and is 

stopped at the location of the pink cross. However, the model predicted a path via the outside, 

where the chances might have been greater for the player to advance towards the end zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 21: The prediction of the optimal running path to the endzone for an American football player with the ball 
(circled in light blue). The purple dots represent the defensive team with a red heatmap represents the dominant 
areas of space control on the field. The yellow dots represent the attacking team with a blue heatmap represents 
their space control on the field. The pink cross on the field marks where the player was stopped in the actual game. 

Field Size with Space Control and Optimal Running Path to the Endzone 
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5.2 The Hypothetical Scenario 
In this paragraph, a hypothetical scenario is outlined (figure 22) to demonstrate to Beyond Sports 

how this model can be applied in the desired situation described in the introduction. The desired 

situation: a model that can predict the best action for a player with the ball: to throw, run, or pass 

the ball. If the player chooses to throw, in which direction or to which player? 

In the actual game, the player with the ball (blue circle) decides to run. However, the player is quickly 

stopped, as indicated by the light-green cross in the diagram. In the outlined scenario, the player 

would have been better off throwing the ball (light-green line) to the teammate indicated by the 

orange circle. From this player, an optimal running path is predicted (black line), increasing the 

likelihood of scoring a touchdown, as this player has much more space to advance. 

 

Figure 22: This is the hypothetical scenario; it shows the player with the ball as a blue circle. The light green line represents 
the hypothetical throw to the player circled in orange, and the black line indicates the optimal running path. The green cross 
marks the spot where the player was stopped. 

 

5.3 Final Product 
The final product is a model that can predict the optimal running path to the endzone for an 

American football player with ball. Figure 23 shows how the same optimal running path for the same 

frame is plotted in two different figures. 

As explained in paragraph 4.3.5, there is a space control matrix for the heatmap with a range of [0.5, 

1.5]. This shows which team has control and how much control the team has over a specific part of 

the field. For both plots in figure 23, the running path uses a range of space control values from [1, 

4]. These values, within the range of [1, 4], represent the actual weights used for space control in the 

Dijkstra grid. Figure 23a shows the optimal running path with space control values for the heatmap 

within the range of [0.5, 1.5]. This visualization displays space control in colour for both teams. 

Conversely, figure 23b shows the same optimal running path but with space control values in the 

range of [1, 4]. This is done to demonstrate how the space control values in the Dijkstra grid (used to 

select the optimal running path) appear when plotted in a heatmap. These visualizations are kept 

simple to facilitate the analysis and presentation of the model to the client. It is up to the client to 

implement the calculation of the prediction model into the Beyond Sports simulation. 

Field Size with Space Control and Optimal Running Path to the Endzone 
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The model had to meet several specific requirements, which were thoroughly checked. The first 

requirement from the client was that the processing time of the predictive algorithm should not 

exceed five seconds. Additionally, the client envisioned a scenario where the developed algorithm 

could function during a live match. This would enable an analyst to display a visualization of the 

predicted optimal running path at any given moment during a live match. To achieve this, the 

processing time should not exceed 0.1 seconds. On average, the processing time of this model is 

0.212 seconds per frame, which means the model meets the specified requirement but not the 

desired scenario for live use. 

The second requirement from the client was that the outcome for the running path had to be 

realistic compared to what happens in practice. To verify this, experts from the client reviewed 

various visualizations of the predicted optimal running path. As described in the previous paragraph, 

20 different successful touchdown runs were compared to the model’s predictions. This approach 

revealed that the model correctly predicted approximately 16 out of 20 routes, indicating that the 

model has a degree of accuracy in predicting realistic running paths. 

The third requirement from the client was that the calculations of the predictive algorithm must 

work on any data frame. This was verified by loading a full match and ensuring that the software did 

not produce any error messages. Additionally, various situations from different matches in the 

dataset were visualized, each time displaying a predicted running path. In every visualized situation, 

no errors in the software code were discovered. 

 

 

 

 

 

 

 

 

 

 

 

a) Space control values where the range 

is between [0.5, 1.5] for the heatmap. 

Here, the space control per team is 

visible. 

b) Space control values (weights) where the 

range is between [1, 4]. This is the space 

control values in the Dijkstra grid.  

Figure 23: The prediction of the same optimal running paths for the same situation is illustrated, where figure 23a shows the 
space control of both teams, and figure 23b displays the space control values in the Dijkstra grid. 

Field Size with Space Control and Optimal Running Path to the Endzone 

 

Field Size with Space Control and Optimal Running Path to the Endzone 
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6 Conclusion 
In the introduction, the following main task has been formulated:  

Developing a model that can predict the optimal running path to the endzone for an American 

football player with the ball.  

To carry out this main task, sub-questions have been formulated. In this chapter, we will first answer 

the formulated sub-questions. Finally, the end result will be presented, and the requirements of 

Beyond Sports will be discussed. 

6.1 Optimal Running Path Model 

To determine what is needed for developing a model to predict the optimal running path to the 

endzone, six sub-questions have been formulated. By answering these sub-questions, this main 

question can ultimately be answered. 

What are the criteria for defining an optimal running path? To define an optimal running path to the 

endzone for an American football player with the ball, various criteria are used. The goal is to find a 

path that, taking into account the influence of opponents (defensive team) and teammates (attacking 

team) on the field and the distances between different points, has the lowest total cost. The 

influence of opponents and teammates, as well as the distances, are expressed as weights 

distributed across the entire field. The total cost is calculated as the sum of these weights. The end 

zone is the target towards which the path is chosen. The optimal path minimizes the total cost, and 

ultimately, this path with the lowest total cost is chosen as the optimal path. 

What data is needed to determine the optimal running path? The required dataset contains the 

following data, which will be used to predict the optimal running path. The x and z coordinates of 

players and the ball per timestamp, as well as the speed variables per player and a variable indicating 

which player has the ball. Additionally, a variable is used to indicate which team a player belongs to. 

The timestamps are recorded at 10 frames per second. 

What model is needed to determine the optimal running path? To determine the most optimal 

running path for an American football player, a model is needed that finds the shortest path in a field 

with various weighted weights. This problem can be solved using the Dijkstra algorithm, which 

determines the path with the lowest total cost by taking into account both the influence weights of 

the players on the field and the distance weights between nodes. 

The influence weights for the players on the field are calculated by the space control model. This 

model assigns a specific weight to each location on the field, indicating which team can have ball 

possession at that specific spot. Ultimately, the space control model calculates these scores for every 

location on the field. First, the player influence area of each player on the field is determined, which 

is used to calculate the influence weight of each individual player. The player influence areas of all 

players are then combined, forming the space control model. 

How can the model account for realistic scenarios in American football? The model takes into 

account realistic scenarios in American football by using the player influence area variable, which 

considers the distance of players from the ball and their speed. Players farther from the ball have a 

larger player influence area because they have more time to anticipate the movement of a player 

running with the ball. Players closer to the ball have a smaller player influence area due to less 
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reaction time. Running players exert more influence in their direction of movement compared to 

walking or jogging players. 

Additionally, the space control model assigns a heavier weighting factor to the player influence area 

of the defensive team. This is because the offensive team is allowed to block the defensive team but 

not tackle them, while the defensive team is allowed to tackle the player with the ball. Therefore, the 

influence weights of the defensive team carry more weight in the model, providing a more realistic 

representation of game influences. 

Moreover, a turn limit condition has been introduced, which stipulates that for a certain running 

speed, from the moment the running path is calculated, a turn limit is applied. This specifically 

applies to the first 3 meters from the player's starting point. It is unrealistic to expect a player who is 

already at full speed to abruptly turn 90 to 180 degrees. By integrating this condition, abrupt turns 

are limited for certain speeds in the first 3 meters of the path prediction, resulting in more realistic 

running paths. 

What variables are needed to determine the optimal running path? The variables required for the 

Dijkstra algorithm model are as follows: 

• Nodes: Represent the different positions on the field, including the starting point, possible 

intermediate points, and the endzone. 

• Connections between nodes: Represent the possible paths along which the player can 

move. These connections have distance weights, which indicate the distances between the 

nodes. 

• Player influence area variable: Indicates the influence weight of an opponent or teammate, 

with higher weights indicating greater influence (and thus more resistance). 

• Source: The starting point of the player with the ball. 

• Target: The endzone where the player needs to reach. 

 

How is a single point chosen, and thus a single route for an American football player with the ball 

determined? The goal in the model is the endzone, where the player can make a touchdown. Various 

nodes are located on the line of the endzone. The Dijkstra algorithm calculates the route with the 

lowest total cost to these points. These costs are then compared, and the route with the lowest cost 

is chosen as the optimal route. 

6.2 Final Product 

The assignment involved the development of a model, with corresponding calculations, that can 

predict the optimal running path to the endzone for an American football player with the ball. The 

results of the implementation needed to be visualized, as shown in figure 24. The red heatmap 

represents the dominant areas of space control for the defensive team (yellow dots) and the blue 

heatmap represents the dominant areas of space control for the attacking team (purple dots).  

Beyond Sport had several requirements that needed to be met. 

The first requirement was that the processing time of the prediction algorithm should not exceed 5 

seconds. The average processing time of this model is 0.212 seconds per dataframe, thus meeting 

this requirement. 
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The second requirement was that the outcome for the running path should be realistic compared to 

what occurs in practice. Experts from the client reviewed various visualizations of the predicted 

optimal running path. Twenty successful touchdown runs were compared with the model's 

predictions. The model correctly predicted approximately 16 out of these 20 routes, demonstrating a 

level of accuracy in predicting realistic running paths. 

The third requirement was that the prediction algorithm works on any dataframe of a loaded 

American football game. This was verified by loading an entire game without any error messages. No 

software errors were detected. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Figure 24: The prediction of the optimal running path to the endzone for an American football player with the ball (circled in 
light blue). The yellow dots represent the defensive team with a red heatmap represents the dominant areas of space 
control on the field. The purple dots represent the attacking team with a blue heatmap represents their space control on the 
field. 
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7 Discussion  
During this chapter, certain assumptions and limitations of the model are discussed, particularly in 

the context of repeating this research. 

In this study, the optimal running paths were evaluated based on successful touchdown runs. The 

predicted running paths were assessed on 20 different successful touchdown runs. This approach 

revealed that the model correctly predicted about 16 out of 20 routes, indicating a certain degree of 

accuracy in forecasting realistic running paths. However, this number, 16 correctly predicted paths, 

could vary if a different set of 20 successful touchdown runs were used. To obtain a more accurate 

estimate of the model's performance, the number of observations should be increased. Statistical 

methods such as confidence intervals and sample size calculations can help determine how many 

touchdown runs are needed to achieve the desired accuracy (Mcleod, 2023). For example, to obtain 

a 95% confidence interval with an accuracy of ±5%, a larger sample than the current 20 runs is 

required (Mcleod, 2023). This would likely reduce the variability in the predictions and provide a 

more precise picture of the model's performance. 

Additionally, the correctness of the predictions was visually inspected, meaning that in most cases, 

the predicted route did not exactly match the successful touchdown run. The RMSE (Root Mean 

Square Error) measures the average deviation between predicted and actual values. At selected 

points, the differences between predictions and measurements are calculated, squared, averaged, 

and then the square root of this average is taken. RMSE thus represents the average error of a 

model. A deviation of 1 meter may be acceptable, but it is better to discuss this with the client or a 

American football specialist. For more information on the calculation of RMSE, see the source 

Bobbitt (2021). 

It is assumed that the successful touchdown run is always the most advantageous route to the end 

zone. This assumption can be questioned in some situations, as it is possible that there was an even 

more advantageous route to the end zone than the successful touchdown run. 

The routes were made more realistic by transformations of scale factors, the range of the influence 

radius, and the space control values based on successful touchdown runs. It is possible that using 

other successful touchdown runs for these transformations would slightly change the magnitude of 

the scale factors or the range. 

In the space control model, speed affects the player influence area, both in direction and how quickly 

the player moves towards something. However, the model does not account for different types of 

players, which can lead to situations where a player is close to the predicted running path but lacks 

speed at that moment, reducing their influence towards the path. This player, however, might be 

extremely fast and have strong acceleration, meaning their influence on the field towards the path 

should be greater than calculated. Ultimately, a player with this acceleration is more likely to stop the 

player with the ball. 
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8 Recommendations  
After conducting the research and completing the assignment, several recommendations should be 

considered for future research or further investigation. 

1. Simplifying the Programming Code: The first recommendation is to simplify the 

programming code of the model in Beyond Sports' software. This research was conducted by 

a mathematician with basic programming knowledge, with the focus being on getting the 

model to work rather than on efficient coding. Although the model currently functions, the 

code is not optimized for simplicity. By simplifying the programming code, the processing 

time per dataframe can be reduced, leading to faster processing times. 

2. Testing Alternative Algorithms: The second recommendation is to test other algorithms for 

solving the shortest path problem. This should include both the algorithms discussed in this 

research and those not yet considered. The current processing time does not yet meet the 

desired 0.1 seconds per dataframe, which is necessary for live match applications. The D* 

Lite algorithm (Jin et al., 2023) is recommended for further testing, despite its complex 

implementation. D* Lite uses incremental planning (De Swart, 2023), allowing it to adjust 

existing calculations to new circumstances without starting over. This saves time and 

computational power in dynamic environments (Jin et al., 2023). In contrast, Dijkstra's 

algorithm must completely recalculate every time changes occur, which takes more time. 

Additionally, there are several other algorithms (Chumbley, n.d.) (not discussed in this 

research) that can solve the shortest path problem, but these are often more complex to 

implement than Dijkstra’s, which is known for its simple implementation. 

3. Evaluating Predicted Running Paths in Simulations: The third recommendation is to evaluate 

the predicted running path in a programmed simulation. This involves creating a simulation 

where players react to situations similar to what happens in a game. For instance, an 

opponent tries to intercept the ball, and teammates help the player with the ball advance as 

far as possible. If such a simulation is created, the player with the ball can be programmed to 

run the predicted path. This would allow an assessment of whether the path is indeed the 

optimal running path to a specific point or where the player is stopped. 

4. Researching Maximum Turning Angles per Speed Interval: Further research should be 

conducted on the maximum turning angles per speed interval used in the turning angle 

condition. These parameters are currently chosen with a simple approach. It is 

recommended to conduct independent research with athletes, examining the speeds at 

which a player can turn and the corresponding turning angles. Additionally, it is crucial to 

investigate how long a player needs to turn between 90 and 180 degrees at high speeds and 

how much they need to decelerate for this. Measuring the average deceleration rate of an 

elite athlete is also relevant for this research. This recommendation would make the running 

paths more realistic, as the parameters measured by this proposed research are more 

reliable compared to the simple approach used in the current research. However, the effect 

would not be significantly large since it only concerns the first few meters of the running 

path. There is already a turning radius (with the simple approach) in the model, but this 

radius might be adjusted, either larger or smaller, through further research in this area. 
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5. Considering Other Distances as End Goals: Other distances as end goals should be 

considered. Currently, only the end zone is chosen as the end goal. However, in some 

situations, a team aims to advance just 10 yards from their starting point on the first down to 

earn four new downs and continue until they score. Therefore, the 10-yard line from the 

starting point of the first down is also very important in American football. This can lead the 

model to predict a different path than when the end zone is the end goal. Furthermore, it 

may be necessary to adjust the scale factors and the range of the influence radius for this 

new end area. These paths should then be reevaluated. In which situation each end goal is 

used – the running path to the 10-yard line or the end zone – still needs to be determined. 

One possibility is to predict both options and leave the choice to an analyst. This analyst can 

use the predictions for game segments to support what a player could have done better 

during the game. 

6. Assigning a Success Score to a Predicted Path: A success score should be assigned to a 

predicted path. Currently, a running path is predicted, but no probability or score of success 

is calculated. The model (Dijkstra's algorithm) also calculates the total cost per path and 

indicates how many nodes the path passes through. This allows the average weight per step 

to be calculated. Each step between nodes has a certain weight with an upper and lower 

limit. By comparing these limits, it can be determined whether the average weight per step is 

closer to the lower or upper limit, which enables a simple score for the probability of 

success. Additionally, it is interesting to explore other ways to measure the success score of 

the predicted path. 

7. Studying and Implementing Reinforcement Learning Approaches: The final 

recommendation is to study and implement the research in section 4.1, "A Reinforcement 

Learning Based Approach to Play Calling in Football"(Biro, P. & G. Walker, 2021). This research 

focuses on a reinforcement learning-based approach to making play decisions in American 

football. It uses a Markov decision process to determine optimal choices at each play level, 

considering collected data and the probabilities of various play outcomes. This process helps 

optimize decisions by anticipating the expected utility of different actions, such as running, 

passing, or handing off the ball, in various game situations. 

The client should study and integrate this methodology to answer the primary question in 

the desired situation: What is the best action for a player with the ball—throw, run, or hand 

off the ball? If the answer is for the player to run, the model from the current research can 

then be used to determine which direction to run. The approach is extensively analysed in 

the document with various examples and scenarios within the game. This provides insights 

into how data analysis and machine learning can contribute to strategic decision-making in 

American football. By applying this methodology, a model can be developed that not only  

 

 

 

 

 



41 
 

Bibliography 
Afi. (2023, September 21). American Football’s Global Reach: The Growth of the NFL 

Worldwide. American Football International. Consulted on 4 April 2024, from 

https://www.americanfootballinternational.com/american-footballs-global-reach-the-

growth-of-the-nfl-worldwide/ 

Algorithm Examples. (2024, February 13). Dijkstra vs Bellman-Ford: a shortest Path 

Algorithms showdown - algorithm examples. Consulted on 22 May 2024, from 

https://blog.algorithmexamples.com/graph-algorithm/dijkstra-vs-bellman-ford-a-

shortest-path-algorithms-showdown/ 

Ambler, W. (2024, June 7). Sports Analytics: What is it & How it Improves Performance? - 

Catapult. Consulted on 8 June 2024, from  https://www.catapult.com/blog/what-is-

sports-analytics 

Arora, J. S. (2004). Optimum Design Concepts. In Elsevier eBooks (pp. 83–174). Consulted 

on 20 May 2024, from https://doi.org/10.1016/b978-012064155-0/50004-5 

Biro, P. & G. Walker (2021, March 15). A Reinforcement Learning Based Approach to Play 

Calling in Football. Pdf, University of Texas at Austin. Consulted on 30 April 2024, 

from https://arxiv.org/pdf/2103.06939.pdf 

Bobbitt, Z. (2021, May 10). How to interpret Root Mean Square Error (RMSE). Statology. 

Consulted on 11 June 2024, from https://www.statology.org/how-to-interpret-rmse/  

BSc, D. C. (2023, July 4). Hoe Snel Rent een Mens Gemiddeld (km/u)? En Wat is het 

Wereldrecord? Human Nature. Consulted on 30 May 2024, from 

https://gohumannature.com/hoe-snel-rent-een-mens/?utm_content=cmp-true 

Cambre, C. (n.d.). Dijkstra algoritme (1). GeoGebra. Consulted on 9 May 2024, from 

https://www.geogebra.org/m/khkGTYvf 

Chumbley, A (n.d.). Shortest Path Algorithms | Brilliant Math & Science Wiki. Consulted on 

4 June 2024, from https://brilliant.org/wiki/shortest-path-algorithms/ 

https://www.americanfootballinternational.com/american-footballs-global-reach-the-growth-of-the-nfl-worldwide/
https://www.americanfootballinternational.com/american-footballs-global-reach-the-growth-of-the-nfl-worldwide/
https://blog.algorithmexamples.com/graph-algorithm/dijkstra-vs-bellman-ford-a-shortest-path-algorithms-showdown/
https://blog.algorithmexamples.com/graph-algorithm/dijkstra-vs-bellman-ford-a-shortest-path-algorithms-showdown/
https://www.catapult.com/blog/what-is-sports-analytics
https://www.catapult.com/blog/what-is-sports-analytics
https://doi.org/10.1016/b978-012064155-0/50004-5
https://arxiv.org/pdf/2103.06939.pdf
https://www.statology.org/how-to-interpret-rmse/
https://gohumannature.com/hoe-snel-rent-een-mens/?utm_content=cmp-true
https://www.geogebra.org/m/khkGTYvf
https://brilliant.org/wiki/shortest-path-algorithms/


42 
 

De Swart, N. (2023, June 19). Agile: incrementeel en iteratief. Reaco Academy. Consulted on 

3 June 2024, from https://www.reaco.nl/blog/agile-incrementeel-en-

iteratief/#:~:text=Wat%20is%20incrementeel%3F,aan%20hetgeen%20er%20al%20w

as. 

Dos’Santos, T., Thomas, C., McBurnie, A., Comfort, P., & Jones, P. A. (2021). Change of 

Direction Speed and Technique Modification Training Improves 180° Turning 

Performance, Kinetics, and Kinematics. Sports, 9(6), 73. Consulted on 10 June 2024, 

from https://doi.org/10.3390/sports9060073  

Fernández, J., & Bornn, L. (2018). Wide Open Spaces: A statistical technique for measuring 

space creation in professional soccer. ResearchGate. Consulted on 20 April 2024, 

from 

https://www.researchgate.net/publication/324942294_Wide_Open_Spaces_A_statistic

al_technique_for_measuring_space_creation_in_professional_soccer 

Gallagher, N. B., Eigenvector Research, Training, and Software, Eigenvector Research, Inc., 

Gallagher, N., Eilers, P., & Eigenvector Research, Inc. (1964). Savitzky-Golay 

Smoothing and Differentiation filter [White paper]. Eigenvector Research, Inc. 

Consulted on 30 May 2024, from https://eigenvector.com/wp-

content/uploads/2020/01/SavitzkyGolay.pdf 

GeeksforGeeks. (2023, November 23). Shortest Path Algorithm Tutorial with Problems. 

GeeksforGeeks. Consulted on 2 June 2024, from 

https://www.geeksforgeeks.org/shortest-path-algorithms-a-complete-guide/ 

GeeksforGeeks. (2024b, June 4). How to find Shortest Paths from Source to all Vertices using 

Dijkstra s Algorithm. GeeksforGeeks. Consulted on 7 June 2024, from 

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/ 

https://www.reaco.nl/blog/agile-incrementeel-en-iteratief/#:~:text=Wat%20is%20incrementeel%3F,aan%20hetgeen%20er%20al%20was
https://www.reaco.nl/blog/agile-incrementeel-en-iteratief/#:~:text=Wat%20is%20incrementeel%3F,aan%20hetgeen%20er%20al%20was
https://www.reaco.nl/blog/agile-incrementeel-en-iteratief/#:~:text=Wat%20is%20incrementeel%3F,aan%20hetgeen%20er%20al%20was
https://doi.org/10.3390/sports9060073
https://www.researchgate.net/publication/324942294_Wide_Open_Spaces_A_statistical_technique_for_measuring_space_creation_in_professional_soccer
https://www.researchgate.net/publication/324942294_Wide_Open_Spaces_A_statistical_technique_for_measuring_space_creation_in_professional_soccer
https://eigenvector.com/wp-content/uploads/2020/01/SavitzkyGolay.pdf
https://eigenvector.com/wp-content/uploads/2020/01/SavitzkyGolay.pdf
https://www.geeksforgeeks.org/shortest-path-algorithms-a-complete-guide/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/


43 
 

Haddad, C. (2024, February 12). The complete Beginners Guide to American Football -  

vIQtory Sports. Consulted on 2 April 2024, from   

https://www.viqtorysports.com/how-to-understand-american-football-beginners-

guide/ 

Heijerman, S., (500759701), Drost, S., (500807060), Feenstra, J., (500838122), Wellens, H., 

(500785541), & Wesselink, F., (500883260). (2024). SPACE DOMINANCE. In 

Forward Football & Hogeschool van Amsterdam, Forward Football [Report]. 

Henkny. (2014, 27 augustus). Stride Length and Running Stride Lenth for FitBit. 

MyFitnessPal.com. Consulted on 11 June 2024, from 

https://community.myfitnesspal.com/en/discussion/1415411/stride-length-and-

running-stride-lenth-for-fitbit  

International Federation of American Football. (2023, June 6). A Guide to Tackle Football - 

International Federation of American Football. Consulted on 6 April 2024, from 

https://www.americanfootball.sport/a-guide-to-tackle-

football/#:~:text=Players%20on%20the%20offensive%20team,and%20pulled%20to

%20the%20ground. 

Jin, J., Zhang, Y., Zhou, Z., Jin, M., Yang, X., & Hu, F. (2023). Conflict-based search with D* 

lite algorithm for robot path planning in unknown dynamic environments. Consulted 

on 20 April 2024, from https://doi.org/10.1016/j.compeleceng.2022.108473 

Jones, B. J. M. (2024, March 7). Football retains dominant position as favorite U.S. sport. 

Gallup.com. Consulted on 1 April 2024, from 

https://news.gallup.com/poll/610046/football-retains-dominant-position-favorite-

sport.aspx#:~:text=Football%20Continues%20to%20Rank%20as%20Americans'%20

Favorite%20Sport&text=Trend%20in%20Americans'%20favorite%20sport,%25%20

and%209%25%2C%20respectively. 

https://www.viqtorysports.com/how-to-understand-american-football-beginners-guide/
https://www.viqtorysports.com/how-to-understand-american-football-beginners-guide/
https://community.myfitnesspal.com/en/discussion/1415411/stride-length-and-running-stride-lenth-for-fitbit
https://community.myfitnesspal.com/en/discussion/1415411/stride-length-and-running-stride-lenth-for-fitbit
https://www.americanfootball.sport/a-guide-to-tackle-football/#:~:text=Players%20on%20the%20offensive%20team,and%20pulled%20to%20the%20ground
https://www.americanfootball.sport/a-guide-to-tackle-football/#:~:text=Players%20on%20the%20offensive%20team,and%20pulled%20to%20the%20ground
https://www.americanfootball.sport/a-guide-to-tackle-football/#:~:text=Players%20on%20the%20offensive%20team,and%20pulled%20to%20the%20ground
https://doi.org/10.1016/j.compeleceng.2022.108473
https://news.gallup.com/poll/610046/football-retains-dominant-position-favorite-sport.aspx#:~:text=Football%20Continues%20to%20Rank%20as%20Americans'%20Favorite%20Sport&text=Trend%20in%20Americans'%20favorite%20sport,%25%20and%209%25%2C%20respectively
https://news.gallup.com/poll/610046/football-retains-dominant-position-favorite-sport.aspx#:~:text=Football%20Continues%20to%20Rank%20as%20Americans'%20Favorite%20Sport&text=Trend%20in%20Americans'%20favorite%20sport,%25%20and%209%25%2C%20respectively
https://news.gallup.com/poll/610046/football-retains-dominant-position-favorite-sport.aspx#:~:text=Football%20Continues%20to%20Rank%20as%20Americans'%20Favorite%20Sport&text=Trend%20in%20Americans'%20favorite%20sport,%25%20and%209%25%2C%20respectively
https://news.gallup.com/poll/610046/football-retains-dominant-position-favorite-sport.aspx#:~:text=Football%20Continues%20to%20Rank%20as%20Americans'%20Favorite%20Sport&text=Trend%20in%20Americans'%20favorite%20sport,%25%20and%209%25%2C%20respectively


44 
 

Khodadadi, N., Gharehchopogh, F. S., Abdollahzadeh, B., & Mirjalili, S. (2023). Space truss 

structures’ optimization using metaheuristic optimization algorithms. In Elsevier 

eBooks (pp. 163–179). Consulted on 22 May 2024, from 

https://doi.org/10.1016/b978-0-323-91781-0.00009-0 

Madkour, A., Aref, W. G., Faizan Ur Rehman, Mohamed Abdur Rahman, & Saleh 

Basalamah. (n.d.). A Survey of Shortest-Path Algorithms. Purdue University, West 

Lafayette, USA. Consulted on 10 May 2024, from https://arxiv.org/pdf/1705.02044 

Martin, C. (2022, November 30). What are Downs in Football? (Full Explanation). Football 

Advantage. Consulted on 15 April 2024, from  https://footballadvantage.com/what-

are-downs-in-football/ 

Martin, C. (2022, December 19). What is the Line of Scrimmage in Football? (Explained). 

Football Advantage. Consulted on 5 April 2024, from   

https://footballadvantage.com/line-of-scrimmage/’ 

Mcleod, S., PhD. (2023). Confidence Intervals Explained: Examples, Formula & 

Interpretation. Simply Psychology. Consulted on 11 June 2024, from    

https://www.simplypsychology.org/confidence-interval.html  

 Power, R. (2024, May 24). Transforming fan engagement in sports: Going beyond the game.  

Consulted on 28 May 2024, from   https://dolby.io/blog/transforming-fan-

engagement-in-sports-going-beyond-the-game/ 

R, A. B. a. a. B., & Ahmed, A. S. A. (2021). Designing and Implementing Shortest and 

Fastest Paths; A Comparison of Bellman-Ford algorithm, A*, and Dijkstra’s 

algorithms. Consulted on 23 May 2024, from https://doi.org/10.14445/22312803/ijctt-

v69i5p102 

Spearman, W. (2016). Quantifying pitch control. ResearchGate. Consulted on 20 April 2024, 

from https://doi.org/10.13140/RG.2.2.22551.93603 

https://doi.org/10.1016/b978-0-323-91781-0.00009-0
https://arxiv.org/pdf/1705.02044
https://footballadvantage.com/what-are-downs-in-football/
https://footballadvantage.com/what-are-downs-in-football/
https://footballadvantage.com/line-of-scrimmage/
https://www.simplypsychology.org/confidence-interval.html
https://dolby.io/blog/transforming-fan-engagement-in-sports-going-beyond-the-game/
https://dolby.io/blog/transforming-fan-engagement-in-sports-going-beyond-the-game/
https://doi.org/10.14445/22312803/ijctt-v69i5p102
https://doi.org/10.14445/22312803/ijctt-v69i5p102
https://doi.org/10.13140/RG.2.2.22551.93603


45 
 

Sports, B. (2024, 4 juni). NFL Toy Story Funday_Sidy-by-Side_1080 [Video]. Vimeo. 

Consulted on 3 April 2024, from 

https://vimeo.com/913021511/099182ac16?share=copy 

Sports Player Tracking | Zebra. (n.d.). Zebra MotionWorks Sport:Real-Time Player Tracking. 

Consulted on 10 April 2024, from https://www.zebra.com/us/en/products/location-

technologies/sports-player-tracking.html 

Stables, J. (2014, August 6). NFL to track players with wearable sensors. Consulted on 11 

April 2024, from  https://www.wareable.com/sport/nfl-to-track-players-with-

wearable-sensors 

STATSports. (2021, July 12). Maximum Acceleration and Deceleration – metric 

Considerations and Uses – STATSports. Consulted on 26 May 2024, from 

https://pro.statsports.com/maximum-acceleration-and-deceleration-metric-

considerations-and-uses/ 

Toppr. (2019, November 12). Kinematics Formulas - Definition, Equations, Examples. 

Consulted on 2 June 2024, from https://www.toppr.com/guides/physics-

formulas/kinematics-formulas/ 

Unix Time Stamp - Epoch Converter. (n.d.). What is the unix time stamp? Consulted on 20 

April 2024, from  https://www.unixtimestamp.com/ 

Wallpaper Flare. (n.d.). HD wallpaper: american football, running back, action, eluding, 

tacklers. Consulted on 20 April 2024, from 

https://www.wallpaperflare.com/american-football-running-back-action-eluding-

tacklers-wallpaper-zoqbw 

W3Schools. (n.d.). DSA Shortest Path. Consulted on 8 May 2024, from 

https://www.w3schools.com/dsa/dsa_theory_graphs_shortestpath.php  

https://vimeo.com/913021511/099182ac16?share=copy
https://www.zebra.com/us/en/products/location-technologies/sports-player-tracking.html
https://www.zebra.com/us/en/products/location-technologies/sports-player-tracking.html
https://www.wareable.com/sport/nfl-to-track-players-with-wearable-sensors
https://www.wareable.com/sport/nfl-to-track-players-with-wearable-sensors
https://pro.statsports.com/maximum-acceleration-and-deceleration-metric-considerations-and-uses/
https://pro.statsports.com/maximum-acceleration-and-deceleration-metric-considerations-and-uses/
https://www.toppr.com/guides/physics-formulas/kinematics-formulas/
https://www.toppr.com/guides/physics-formulas/kinematics-formulas/
https://www.unixtimestamp.com/
https://www.wallpaperflare.com/american-football-running-back-action-eluding-tacklers-wallpaper-zoqbw
https://www.wallpaperflare.com/american-football-running-back-action-eluding-tacklers-wallpaper-zoqbw
https://www.w3schools.com/dsa/dsa_theory_graphs_shortestpath.php


46 
 

Zachary. (2023, September 29). An animated Behind-the-Scenes look at ESPN’s “Toy Story 

Funday Football” - the Walt Disney Company. The Walt Disney Company. Consulted 

on 20 April 2024, from https://thewaltdisneycompany.com/an-animated-behind-the-

scenes-look-at-espns-toy-story-funday-football/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

https://thewaltdisneycompany.com/an-animated-behind-the-scenes-look-at-espns-toy-story-funday-football/
https://thewaltdisneycompany.com/an-animated-behind-the-scenes-look-at-espns-toy-story-funday-football/


47 
 

Appendices 

Appendix 1 
In this appendix, you can find the tables that provide an overview of the variables contained in the 

topics, which in turn are included in the dataframe. These topics are described in the chapter 'Data'. 

The topics Persons (table 8), Ball (table 9), FootballContext (table 10), DownMarkersContext (table 

11), and GameClockContext (table 12) provide an overview of the variables. 

Table 8: Overview of the variables from the dataset from topic 'Persons'. 

Variables  Example Definition 

Id 151 This is a player's ID, each 

player has them own ID in the 

dataset. 

Timestamp 1699225574100 This is a specific value when 

the observation is made. It 

has a Unix timestamp and is 

expressed with millisecond 

precision (Unix Time Stamp - 

Epoch Converter, n.d.). 

Position (3.045, 0, 19.818) This is x, y and z coordinate. 

Where x is the length, y is the 

height and z is the width. The 

unit is in meters. 

Speed 0.204 The magnitude of a player's 

velocity in m/s. 

TeamSide 2 Which team the player plays 

for. 

JerseyNumber 52 What number a player wears 

on his jersey. 

PersonContext MovementOrientation: 178,93  

HasBallPossession: false  

MovementOrientation is how 

it is rotated and is in degrees. 

HasBallPossession is whether 

the player is holding the ball 

(True is fixed or False is not 

fixed). 

 

Table 9: Overview of the variables from the dataset from topic 'Ball'. 

Variables Example Definition 

Id 0 This is an ID of the ball, the ball 

also has its own ID in the 

dataset. 

Timestamp 1699225574100 This is a specific value when 

the observation is made. It has 

a Unix timestamp and is 
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expressed with millisecond 

precision (Unix Time Stamp - 

Epoch Converter, n.d.). 

Position (3.044, 2.088, 19.818) This is x, y and z coordinate. 

Where x is the length, y is the 

height and z is the width. The 

unit is in meters. 

Speed 0.303 The speed of a ball in m/s. 

 

Table 10: Overview of the variables from the dataset from topic 'FootballContext'. 

Variables Example Definition  

ToGO 10 How many yards left to go for 

the LTG. 

BallOn 36 The yard line, where the snap 

is. 

PlayClockTime 25 What playing minute in the 

game. 

Down 2 Which down it is. 

HomeTimeoutsLeft 1 Time outs left for the home 

team. 

GuestTimeoutsLeft 1 Time outs left for the away 

team. 

 

Table 11: Overview of the variables in the dataset from topic 'DownMarkersContext'. 

Variables Example Definition  

InitialDown 27.432 It is starting point from the 

first down. It’s in meters. 

LineOfScrimmage 27.432 The LOS in meters 

LineToGain 18.287 The LTG, the line they must 

achieve to get 4 new downs, in 

yards. 

 

Table 12: Overview of the variables from the dataset from topic 'GameClockContext'. 

Variables Example Definition 

Period 1 What quarter the match is in. 

Minute 14 What minute the match sits 

Second 55 Which second the match sits 

InjuryTime 0 The injury time that may be 

above the regular time 

IsCLockRunning True or False Indicates whether time is 

stopped (i.e., pause moment). 
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Appendix 2 

In this appendix, an overview of the events included in the dataset is provided, with a given 

definition (table 13). The “Data” chapter refers to this appendix. 

Table 13: Overview of events that are going to be potentially useful for this project, with a definition attached. 

Events names Definition 

Pass_forward Forward pass is thrown by the player with ball. 

Run The action of player with ball is running. 

Touchdown It became touchdown after running. 

Pass_outcome_touchdown The forward pass outcome has become a 

touchdown, so other player caught the ball in 

the endzone. 

Pass_outcome_caught The forward pass outcome is caught by a fellow 

player. 

Pass_outcome_incomplete The forward pass was intercepted by an 

opponent or the ball was caught on the ground. 

Handoff Handing the ball off to a teammate. 

Fumble  Fumble occurs when a player loses the ball 

before it is marked as down or when he throws 

or drops the ball. 

Lateral Passes backwards or sideways. 

Tackle Player with ball is tackled by opponent. 

Out_of_bounds The player has run over the sideline with the 

ball. After this, a new down starts. 

Qb_sack The quarterback has the ball and is tackled; this 

is the end of the down. 

Qb_kneel  The quarterback has the ball and kneels; this is 

the end of the down. 
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Appendix 3 
In this attachment, the optimal running path, as predicted in figure 26, is compared to the actual 

running path of the player during a real American football game (figure 25). The comparison focuses 

on the running path through the middle from their own half. 

 

Figure 25:The successful touchdown run (black line) for the player with the ball (circled in red) in a real American football 
game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: The prediction of the optimal running path to the endzone for an American football player with the 
ball (black dot). The purple dots represent the defensive team with a red heatmap represents the dominant areas 
of space control on the field. The yellow dots represent the attacking team with a blue heatmap represents their 
space control on the field. 

 

Note: Adapted from: The simulation of Beyond Sports 
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Appendix 4 
In this attachment, the optimal running path, as predicted in figure 28, is compared to the actual 

running path of the player during a real American football game (figure 27). The comparison focuses 

on the running path from the side of their own half. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: The successful touchdown run (black line) for the player with the ball (circled in red) in a real American football 
game. 

 

Figure 28: The prediction of the optimal running path to the endzone for an American football player 
with the ball (black dot). The purple dots represent the defensive team with a red heatmap represents 
the dominant areas of space control on the field. The yellow dots represent the attacking team with a 
blue heatmap represents their space control on the field. 

 

Note: Adapted from: The simulation of Beyond Sports 
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Appendix 5 
In this attachment, the optimal running path, as predicted in figure 30, is compared with the actual 

running path of the player during a real American football game (figure 29). Here, the running path is 

compared from the side, starting from near the endzone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29:The successful touchdown run (black line) for the player with the ball (circled in red) in 
a real American football game.  

Figure 30: The prediction of the optimal running path to the endzone for an American football player with 
the ball (black dot). The yellow dots represent the defensive team with a red heatmap represents the 
dominant areas of space control on the field. The purple dots represent the attacking team with a blue 
heatmap represents their space control on the field. 

 

Note: Adapted from: The simulation of Beyond Sports 

 


